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Abstract—This paper analyses the influence of sheur deformations on the stability of thin-walled
beams of open section subjected to follower-type loads. The warping of the cross-sections is assumed
to depend on the shear forces as well as on both primary and secondary torsion. The internal stresses
are consistently deduced from the kinematic field. An algorithm is presented which works in the
framework of the least squares method making use of a vector iteration technique. An extensive
comparison is performed with the results offered by the classical models.

I. INTRODUCTION

Starting from the pionecring analysis by Nikolai (1928) of a cantilever beam subjected to
a torque vector acting at the free end, subsequent works of Russian and German schools
(Pfliger, 1950 Beck, 1952) were devoted to single problems of non-conservative mechanical
systems. A comprehensive clarification of the basic concepts of elastic stability came from
the work of Zicgler (1953, 1956). who oftered a classification both of the mechanical systems
and of the related methods of analysis. It was, then, more evident that in the presence of
non-conservative forees, the system may lack adjacent configurations of static cquilibrium
and the instability may consist of a vibrational motion of increasing amplitude (futter).

The problem of bending -torsional flutter of an clastic thin-walled beam as well as that
of a lincarly elastic continuum subjected to follower type loads was tirst formulated by
Bolotin (1963), whose monograph gave a new impulse to these studies (Leipholz, 1964 ;
Herrmann and Jong, 1965: Como, 1966 Augusti, 1966; Nemat-Nasser and Herrmann,
1966a). In this context, the equations of motion with the corresponding boundary conditions
define a non-self-adjoint boundary value problem since circulatory forces cannot, in general,
be associated with a stationary single-valued functional dependent on generalized dis-
placements only. Hence classical variational principles do not hold true and numerical
solutions were often obtained by making use of the Galerkin-Petrov method or of the
incremental virtual work principle when a convenient foundation for an F.E. analysis was
required (Argyris ef al., 1981 ; Argyris and Symeonidis, 1981). Further F.E. formulations
were given by Barsoum (1971) and more recently by Attard and Somervaille (1987).
Convergence investigations of the Galerkin method can be found in Leipholz (1962, 1963,
1983) and Levinson (1966).

An alternative procedure has been followed by several authors (Nemat-Nasser and
Herrmann, 1966b ; Prasad and Herrmann, 1969, 1972 Dubey and Leipholz, 1975) in the
attempt to extend the variational formulations to non-conservative problems in the context
of the lincarized theory of elastic stability. All these formulations, which make use of adjoint
variational methods, can be scen as particular cases of a more gencral approach given by
Telega (1979). An iterative method for the solution of non-conservative stability problems
was recently proposed by Xiong et al. (1989) by solving a set of related conservative
problems. In the same framework a least squares quadratic functional (Altman and Marmo
de Oliveira, 1984), rather than the adjoint equation. was employed. An original approach
was proposed by Leipholz (1980). who introduced a suitable function space supplied
with an appropriate “semi-scalar™ product, where non-conservative systems behave like
conservative ones.
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Sufficient conditions for the stability of non-conservative systems were given in
Benvenuto and Corsanego (1974) by making use of the second Liapunov method.

Sutticient conditions tor self-adjointness of hinear operators. in the presence of live
loads. 1n a class of small incremental displacements, were determined by Capriz and Podio
Guidugli (1981). Recently, Tonti (1984) formulated a general procedure in order to obtain
variational formulations for almost non-linear. non-self-adjoint systems by adopting
abstract spaces involving variations of operators rather than functionals. Starting from
Tonti's formulation, Alliney and Tralli (1984, 1986) deduced suitable F.E. models and
extended the quoted procedure obtaining eigenvalue problems with symmetric but not
definite matnces.

A difterent approach consisting of a direct a posteriori symmetnzation of the
load correction matrix was proposed by Mung and Gallagher (1983). Nonetheless, 1t
must be remarked that such a procedure is of cumbersome application (Klee and
Wriggers, 1983) and physically meaningful only for divergence-type systems (Argyris
et al.. 1981).

Recent developments in the field of space mechanics. hydro and aeroelasticity, mech-
anical and structural engineering have underlined the increasing importance of the structures
subjected to non-conservative torces and the need for proper methods of analysis. Cable
loads. pressure loads acting on offshore or submarine structures, on suspended bridges or
on cooling towers are typical examples of non-conservative loads considered by structural
engineering,

In the more specitic ficld of stability analysis of thin-walled beams, it must be remem-
bered that the beam model has been refined by Nemat-Nasser (1967) and Kounadis (1977)
by including the cffects of shear deformations according to Tumoshenko theory or by
Nemat-Nasser and Herrmann (1966a) and Nemat-Nasser and Tsai (1969) by including the
influence of warping rigidity. More recently, Kounadis and Sophianopoulos (1986) analyzed
the effect of axial inertia on the bending cigentrequencies ol a two-bar frame according to
the Timoshenko beam model (for conservative foads only).

In the present paper, all these aspects are unitfied by the authors in order to analyze
the dynamic response of an open symmetric thin-walled beam subjected to any given
distribution of follower loads acting in a symmetry plane, by making use of a description
of the axaal displacement ficld recently proposed by Laudicro and Savoia (1990a.b). Accord-
ing to this model, for a beam subjected to non-uniform bending and torsion, the local shear
detormations of the middle surface of the beam are taken into account ; hence, with reference
to torsion, a “secondary™ warping is considered which is superimposed to the “primary”
warping given by the theory of sectortal arcas. The warping functions are assumed to
depend on the local beam resultants only, in the context of the de St. Venant model. These
functions yield an approximate representation of the infinite warping functions obtained
by Capurso (1964) through an eigenfunction series expansion. In the present paper, the
authors make use of Hamilton’s law (Bailey, 1973) to obtain a variational equation from
which 10 difTerential equations of motion ure deduced. Partial decoupling is obtained since
the beam is assumed to cxhibit one plane of symmetry. The numerical solution 1s then
pursued through the classical trigonometric serics expansion resulting in a system of lincar
homogencous equations called “generilized and extended equations of Ritz” by Leipholz
(1983). The corresponding cigenvalue problem is ruled by a non-symmetric and strongly
ill-conditioned matrix. All the boundary (lincar and homogencous) conditions which are
not satisticd ¢ priori by the coordinate functions are enforced through a projection technique
onto the subspace defined by the mentioned constraints. The solution of an cigenvalue
problem ruled by a full and non-symmetric matrix is a hard task, especially for an ill-
conditioned problem. For this purpose, an algorithm has been developed (Alliney e af..
1990) which makes use, in the framework of the least squares method, of a vector iteration
technique.

A varicty of example problems illustrate the responsc of a cantilever beam., having
various cross-sections subjected to different load conditions. The influence of shear defor-
mations on (possibly coupled) flexural and torsional modes is investigated and cxtensive
comparisons are made with the classical models.
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2. KINEMATICS

Figure I shows a typical open thin-walled prismatic beam. A right-handed orthogonal
coordinate system C,.xy-is adopted. where x and 1 are the centroidal principal axes. Positive
displacement components are illustrated in the same figure. The coordinates of the shear
centre S(x,. vy). in the local reference system Prp, shown in Fig. 2, are given by :

TR PN

r={v—uxy ds —(¥y—rs) ds

dx dv
h=(x—2xy) a‘ +(_l'—_1'3) a}. )]

where s is a curvilincar coordinate lying on the middle line and the axes p and n are tangent
and normal to the middle line respectively.

It is assumed that the cross-sections are rigid in their own planes whereas the shearing
deformation on the middle surface is not constrained to zero (assumption a). Moreover,
the displacement gradient components corresponding to the loaded configuration are
assumed to be negligible with respect to unity (assumption b).

Y

4

Fig. 2. Typical cross-section and lfocal reference system.
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. /

Fig. 3. Displacement ficld of the beam.

If we consider assumption a, let n” be the plane which defines the average displacement
of the cross-section contour ¢ (Fig. 3). ¢ and §” denote the location of the centroid and
the shear centre of ¢ on the plane n'. By /7 we will denote the intersection between nn” and
the plane containing " puarallel to the original plance n, of the cross-section, whereas f will
denote the straight line parallel to /7 and containing the original centroid. C. The straight
line f'is oriented so that the v axis rotates counterclockwise by the angle «, less than 7, to
coincide with £ Let us define the angle 0 like 0 = "~ f, where i and ff are shown in Fig.
3, and rotate ¢’ by an angle —# around S where the positive rotation s assumed to be
counterclockwise. As a consequence, €7 and ¢ move to C” and ¢” respectively and the
displacement functions &,  and ¢ are defined as the components of CC” along x, vy and =
respectively. By /7 we will denote the intersection between n” and the horizontal plane 7))
containing C".

Let P be a typical point belonging to ¢, P its final position and P’ the projection of P
on the plane n’. Because of the rotation — 0 around S”, the point P” arrives at P” which,
with respect to the swung axes x” and 1", keeps the same coordinates x and y of the point
P in the unstrained configuration (Fig. 4a). Analogously, §° keeps the same coordinates as
S. Hencee, the coordinates of P, with respect to x” and 3. take the form:

N o=x—(r—ys)sin 0 —(x—xg)(l —cos 0)

Vyo=y+{v—xg)sinf—{r—y )l —cos ). (2)
With reference to Fig. 4a, we have:

P A= —Xx"sina+)1 cosx

C'4d = —x"cosx—1"sin 2. (3)
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Fig. 4. In-plane section displacements.

Let ¢ be the angle by which the plane =} rotates around f” to coincide with n’.
Moreover, by { we will denote the out-of-planc displacement P’ P. If Py and P, are the
projections of P’ and P on n;, we obtain (Fig. 4b):

Pod =P Acosp+sing
PP = —P Asin o+ cos . (4)

Finally, considering that the coordinates of 2 in the reference C” xyz are:

Xo = = Podsinag—C"Acos a

PoA cosx—C" A sinx

Yo
<n = I;(lpv (5)
and keeping in mind that the coordinates of C” in the reference Cyxy= are given by ¢, n,
=+, the displacement components of P along the axes x, y and = are given by :
u, = &—x+x(cos ¢ sin* 2 +cos’ ) + 3" (1 —cos @) sin x cos x- -{'sin ¢ sin «
u, = n—y+y’(cos ¢ cos’xz+sin’x) + x’(1 —cos @) sin « cos 2+ {’sin ¢ cos «
u, = {+ . sin ¢ sin x—}” sin ¢ cos 2+ cos ¢, (6)
where x” and 3 are given by eqns (2).

If we consider assumption b, for an arbitrary variation of £(z), n(z), {(z), @(z). 0(z)
and {(z,s) in a neighborhood of the static equilibrium configuration and for any x(z), the
linear and quadratic terms of the displacement components are:

wl =¢—(y—ys)0
' = n+(x—xg)0

w' = {—xp,~yp + (7)
and
W = =Lyl =y, - Hx—xs)0* +{o,
ul? = =lrpl-lxp.0,—~ (-0 +lo,
! = —(x=x9)p. 0+ (—y5)e,0, ()

where
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@O, = @Cos A P, = —@sinx (3

are the first order rotations of the cross-section around the axes v and v respectively. The
definition (8) implies that the corresponding positive rotation vectors are oriented like
negative x and positive y axes respectively. Finally. the linear part of the out-of-plane
displacement J is cast in the form (Laudiero and Savoia, 1990a)

C= —@,(D(s) + 1 (D )+ L (5) + LW, ). 9)

where w(s) is assumed to coincide with the sectorial arcas. The tunctions ¢, and ¢, are able
to reproduce the Reissner-Mindlin formulation (Mindlin, 1951): when they are made
coincident with n” and &’ respectively.t the Euler-Bernoulli model is obtained. Analogously,
when the function ¢,, s made coincident with €7, the Viasov tormulation is recovered. The
terms . (2, (s) and x.(2), (5) take into account the sheur strains due to the beam forces
T, and T,, whereas the term %, (2)¢,.(s) (secondary warping) plays the analogous role with
respect to the shear stresses arising from non-uniform torsion. By making use of cqns (7)
and (9) the linearized displacement components of the cross-section contour in the local
reference system Pnpz are given by :

Ay
u, 5 ds N ds + Uh
o L dx dy
= : -1
Hr Sy T ds
W = —p v = r =g A (1)

The warping functions ., W, ., are obtained under the assumption that they depend
only on the local beam resultants. Analogously with the de St Venant model, assuming
bending and twisting moments lincarly varying along the beam axis and making use of eqgns
(10), the warping functions can be obtained by meuns of the following relations (Laudicro
and Savota, 1990b) :

. (s) = lp,(.\‘) — Z J)e,—c, U f=x.v.m) (1
where
d DS, d DS d - DS
== = S= - 12
as ¥ Ju 7 ds 2 Jo s It -

t(s) is the thickness of the cross-section,

d4\': d\': i d(.’):
= || )dd D= {5 )dd. D, = d-. 13
po= [ (4 aa o= [ (§)ar 0= ] () ()

A is the arca of the cross-section and S, .. S,, and J,. J,. J, arc the first and the second
area and sectorial moments respectively.

The three constants ¢, and the nine constants ¢, can be determined by imposing the
orthogonality conditions:

t Superscript ( )” means derivative with respect to -
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Y. dA =
(i, j = x.yv.w). (14)
f jy,dd =0

resulting in:

= ld‘4
€= ,4‘1;

ﬁj'p"“ (iL.j=x.r.m). (15)

C; = ——

172
J jidA
4

3. STRAIN DISPLACEMENT RELATIONS
Adopting a Lagrangian description, the lincar and quadratic terms of the Green strain
tensor are given by :
g = L{(Vu'" +u'"V)
e = Vu'" - u"V 4 {(Vu'? +u' V) (16a.b)

where the operator V means gradient (or its transpose when it is postponed). Making use
of the lincarized displacement ficld (10), eqn (16a) yields:

(£
i

C’ - ‘P:~-V - (p,\." - (P.’,,(U + XI\'// vt X:'ﬂ; + X:u'ﬁu.

l dy dy dw d d d
A1) ) :l— r_ . 1_ g o N _
b = 4 [(s P, TOr=ed +(U'—o,) & T g W)+ i W)+ d_‘,(tﬂ.,,)].
(7

Moreover, recalling that the cross-section does not distort and assuming that any
straight line remains normal to the middle surface of the beam, we have:
gy =l =0, (17

Analogously, assuming the lincarized displacement field, eqn (16b) becomes :

| dv dx
a0 = S0 0 00 kD
£ 5 { <04 +n ds R T }
| dx dy
= 20T g0 100+ u)
Ean 2{ SOy Tl g T “}
g2 = HE T =23 —y) &0+ 2(x —x I 0+ [(x —x5)  + (3 —p) 1077 + Ll

(18)

Moreover, in accordance with the kinematic assumptions, the following is adopted :
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e = e =0. (18")

AC2)

Ty

Since ut is expected to be very small compared with unity, the terms of eqns (18°) containing
such a derivative will be neglected in the following.

4. THE LOAD CONDITION

The loading condition of the beam will be defined in terms of a distribution of a line
load q and in two distributions of loads acting at the end sections. f(0) and f(/). having v
and - components. Both the load q and the loads f are assumed to act in a symmetry plane
(say v-2). By making use of the linear part of the displacement field (7). the corresponding
variations of the applied loads are obtained :

q" =(R,—Dq. "= (R—Df. (19)

where Fis the unit tensor and the first order rotation tensors R, and R; may assume either
of the following forms:

! 0 ()
R = 0 l 0 . (20)
R I [ |
T -0 @,
R.={ ¢ ! @, 2n
=, —¢, |

The tensor R, derives from the assumption that, during the deformation, the toad
follows the v = plane keeping the same angle with the transformed local generatrix ; on the
other hand, Ry reflects the assumption that the load is rigidly connected with the middle
planc of the cross-scction. In the following, the cases R, = R; and Ry = Ry will be developed
in detail whercas a numerical application will be given for the case Ry = Ry;.

With reference to a thin-walled beam element, the non-vanishing components of the
Cauchy stress tensor a, corresponding to the static equilibrium configuration and referred
to the local reference system, may be written as follows :

r.s. 1.5, N M, . M, , ,
W = = =, e = - + o, 22
T i g ET AT T (22)
where
M, =J Ec.ap, dA. S, =J yods. J, =f (W.) dA (23)
4 i} A4

and T, is the first derivative of M, with respect to = finally the positive components of
the beam forces are shown in Fig. 1.

5. STABILITY CRITERION

The basic method of investigating the stability of non-conservative problems consists
of the analysis of the oscillations of the system close to its equilibrium position. An integral
formulation governing the motion of a body B can be expressed through Hamilton's lawt
(Bailey, 1975):

+ A superimposed dot means material derivative with respect to time.
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129

J:(éT—6W+éL)dt+l:jpd"’-éu‘“dV] =0, (24)
' 8

n

for any admissible variation of the generalized displacement functions. In eqn (24) T is
the variation of the kinetic energy and 6 W is the variation of the second order part of the
strain energy. Moreover. L represents a second order work collecting the work done by
the conservative loads for the displacement components u'”’ and the further work done by
the non-conservative components f''' and q'"" of the external loads for the displacement
field u'". The last term of eqn (24) containing the virtual work of impulses may be made
equal to zero by imposing the requirement that du''(r;) = ou'"(¢.) = 0 which is fully
compatible with the assumption of free oscillations of the system. The variational equation
(24) represents a non-self-adjoint problem since the external work 0L cannot, generally, be
derived from a potential. The residual terms appearing in eqn (24) may be given the compact
expressions:

~

0T = pl-l“)'(Sﬁ‘“dV
Ja
.
oW = s””E&s"’dl"+JS'&s‘:’dV
J8 8
oL = p'éu‘z’dS-&J‘ p'" - du'"ds, (25)
Jow s

where E is the clastic tensor at the origin and S is the second Piola Kirchhofl stress tensor
which, under the assumption of small components of both displacements and displacement
gradients, reduces to the Cauchy stress tensor a. Morcover du'? is the quadratic part of the
displacement ficld (77), p represents the loads acting on the body surface in the static
cquilibrium configuration and p'" expresses the variation of the external loads cor-
responding to the lincarized displacement field u'".

Making use of egns (77), (10), (17), (18), (19) and (22) und keeping in mind that the
load p in ¢qns (25) symbolizes the loads g and f, the eqns (25) may be rewritten as follows : 1

1
5T = J PLAZSE+ Ao+ AL + ys AS(ED) + J 080 + J ¢ 8¢,
0
+ ‘I;"P,l'(s‘p}‘ + Jru (p-u()‘(pm + ‘Iw‘ X,\JX\' + Jl#‘ X;‘SX; + ‘/W”,X.,m(sx‘m} d: (26)
[
oW = J VELAS 00+, 0000 + 10100, +J,0.,00,+J, 10X
(1]

+Jy 001+ Ty A0+ G000+ D (S —0,)0(" ~ )

+ D, =)o =@ )+ D, (0 =¢,)00 —q,)

+ Dy x.0% + Dy 1,04, + Dy %%+ D,0((E =0 )0 —0.,))

+ D, (S =)+ Doy (A0 =0.)) + Dy y (X X.)

+ D, 306" =)+ Dy (%, (§" = 0.)) + Doy 0(3.,(0 —,,))]} dz

/
+ J IN[ESE 4000 +350(E07) + (Js/ AV 0]
[}

— T 0(Z0)+ M S(E0)+2(C M, +Cy M, 030 ~(C. T, +C, T, )5(00)) d= (27)

tIn the expression of § 147, as usual in the beam theory, the Poisson effect has been accounted for by assuming
£, = £, = ~vi whereas in eqn (18%), &, and «,, were assumed to vanish.
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oL = f 4 (=005 =00 +(n" =@ ) yop ] +4q.[non
0
H (S = (=)0 NI — (v —1r5)0) + (v —y)o(bp )] dz
+[FA(=80i—@ 00+ Fp,0i+pon—v0p)+.4 600p.]..h,. (28)
where £ and G are the normal and tangential elastic moduli. ¢, and ¢. are the line foad
components in the 1 and - directions, F,, F. and . #, are the beam resultants of the external

forces f. J, is the torsion constant, J is the polar moment of inertia about the shear center
and where

J, = f jdd (L j=y¢. v,.y,) (29)

)

di dj
D,=| Y = xroob) (30)

2dy dy

. 1 .
C,. =ri— 57 j_r(.\" +ro)dd (3
=S di

N l L2 ™ 1
¢, =~ 2./,,‘ llﬁ,(.\ + ) dAd. (32)

Equation (28) has been derived neglecting all the warping terms of the displacement ficld
consistently with the assumption that the follower forees are insensitive to the warping
terms. All the unknown functions have to belong to #1(0. 1) according to the requirement
of the vartational formulation (24) (28).

To summarize, the present formulation neglects flexural extensional and torsional
extenstonal internal energy terms as well as the flexural-flexural terms given by the geometric
etfects of an applied torque. These contributions were evaluated in Laudicro and Zaccaria
(1988a,b).

6. THE FQUATIONS OF MOTION

With reference to Hamilton's faw expressed by eqn (24), making use of eqns (26) (28)
and integrating by parts yield the following cquations of motion:
pAE+ pr Al =GD (3 =p,) —GD (0 ~p.,) —GD,, 1.

—GD, 4, =N =Ny "+ T = MO +q,0—¢.5 4. (r—r)) =0
pAi—=GD,(f =) =GD,, 4. =Ny —¢." =0
pAS—EAT +qn =0
pJ U+ prg AE =G0 =GD (0 —.,) —GD (& —¢,)
=GDy 1 =GD,y Ai = Ny = NS/ O =T
~ M E=2ACM A+ Cy MW —q. (3 =3) 0+ gy =) —0) =0

pd ¢, —EJ @ —=GD.(of =0 )—GCGD, 4. —q. 30"~} =0

+ The coupling term J, , has been disregarded in eqns (27) and (28) since it is negligible with respect to
analogous coupling terms. Repeated subscripts are reported once only.
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0J.¢,~EJ.o;—GD ({~9,)~GD, (0°—¢,)~GD .y x.—GDy X.~q:(y—ys)0 =0
plub,—EJ,0,—GD, (0 —¢,)=GCD,,(S~¢,) —GDy x. —GD,y % =0
pJ, %= EJ, X +GD, X, +GD (I —0)+GD,,, (' —9,)+GD, y %, =0
pJy Xy —EJ, X7+ GD, . +GD (N —p,) =0
oy %o EJ, 10+GD, %, +GD, , x.+GD, (I —0)+GD,, ('—0,) =0, (33)

with the relevant boundary conditions:

(GD (& ~9)+GD,,(0~0,)+CDy . +GDyy %, + N
+ Ny —T,0+ M0 +F,0~-F.0,)05 =0
(GD, (' —@)+GD,, 1.+ Nn'—F.0,)on], =0
(EAS + F9)0]h =0
UGIY +GD, (0 —0.) +GD, (& =9, ) +GD,,, X +GD.y Y.
+ Ny + NI/ DO+ M E+2AC M +Cy MW —(C. T, +C, T, )00, =0
(ES 0 )30 ]6 =0
[(ES ;= Foly = y)Ddg, ]y = 0
(ES.0.)00.,]0 =0
((EJ, x)oxdo =0
[(E, )oYy = 0
[(£]y, X0) 3%l = 0. (34)

7. THE DISCRETE MODEL

The solution to the problem (24) is obtained by making use of trigonometric series
expansions so as to adhere strictly to the problem of the beam vibrations. Such & choice
makes the comparison with the analogous results given by the Timoshenko and Euler-
Bernoulli models more direct.

All the boundary conditions which are not satistied by the coordinate functions will
be enforced by a projection onto o proper subspace.

Assuming the displacements to be functions of time and space independently, each of
the unknown functions and the corresponding variation can be given the compact form:

e

gz.0 = ajg(z)e
dg(=.t) = dalg(z)e” (35)
where the vectors g and a, contain a suitable number of coordinate functions and the
corresponding Lagrangian coordinates respectively.
Substituting eqns (35) into (26)-(28). the variations of the kinetic and strain energy
and that of the work of the external loads can be written in the form:
ST = p*da"Mac™"
W =da"K,ac™

0L = —da"K ae¥ (36)

where the vector a represents a global vector of unknown generalized coordinates collecting
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all the vectors a,. the matrix K is non-symmetric since d L contains the work of the follower
loads and the matrix M is the mass matrix.
Hence. setting K = Kw + K, the variational equation (24) turns out to be discretized

as follows:

J‘.éaT(Ka—p:Ma)e:””dt =0 (37)

subjected to:
Cae =0, Cdae™ =0 (38)
where eqn (38) collects the boundary conditions which are not satisfied a priori by the

functions g. By decomposing the matrix M according to a Cholesky scheme, i.e. M = LL'
and setting x = LTa, the problem (37). (38) becomes:

‘2
J IX"(Ax—pix)e*dr =0 (39)
subjected to:
Bx =0, Box =10 (40a.b)
where
A=L 'KL''", B=CL " (41)

In order to satisfy the constraints (40), a projection operiator # is defined (Aoki,
1971):

# =" =1-B(BB') 'B, (42)

which projects any given vector x € RY onto the subspace defined by the linear homogeneous
equation (40a). Hence, making use of the condition 2 = 222, the problem (39), (40) is
reduced to the form:

f SXTP(PAPX—p Px) e dr = 0. (43)

Since in the quotient space RY/# the variation d4x is arbitrary, from eqn (43) it is
immediately obtained :

PAPX—p'#x = 0. (44)
Equation (44) will be rewritten in the following:
ofy—iy =0, (435)
where 4 = plL of = PAP and y = PxeRY/#, as required by the original problem.
Equation (45) represents a standard eigenvalue problem which satisfies all the bound-
ary conditions, including the non-essential ones. This technique turns out to be particularly

efficient since the structural response will be extremely sensitive to the loading features as
will be seen in the following.
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Since the matrix K, and consequently the matrix &/, are strongly ill-conditioned and
non-symmetric, it was necessary to develop a suitable algorithm (Alliney er al.. 1990) which
is briefly outlined hereafter. The mechanical counterpart of the ill-conditioning of the matrix
K involves the rapid increase of the circular frequencies (square roots of the corresponding
eigenvalues) with the higher modes of vibration.

We will restrict ourselves to the search of the real solutions to the problem (45) ; hence
the analysis will be developed under the assumption that the eigenvalue problem admits
one or more real solutions. In the framework of the least squares method. the solutions will
be derived from the condition:

lafy—2yll:

min J(y. A 3) = ==

(46)

where J = 0 vanishes iff the pair (y. 4) is a solution of the problem (45). It can be shown
that the problem (46) can be given the equivalent, Rayleigh-type, form:

. T/ TQ(y) o
min 2(y)|A(y) = -2 IDLY 7
lylz
where Q, the Householder reflector (Stewart, 1973), is given by the expression :t
Qz) = -2 (48)

The minimization of :#(y) is obtained by means of a vector iteration technique. At the
nth iteration the Houscholder reflector is determined by means of the sth trial vector y,
giving Q, = Q(y.); then the gradient of the form:

y' o/ Q,ly

R = 3
0=

(49)

is determined, at the point y,. resulting (to the accuracy of a scalar multiplier) in the
expression :

r, = o'Q, vy, — (y1./7Q, V)Y, (50)

Hence, a step is performed towards the minimization of R(y) by correcting the current
vector as follows :

Yas =5'n*al"n (5”

where 2 may be determined through the condition that #,(y,) —#,(¥,. ) is maximum,
resulting in:

H(#(32) = R ()] +/[Ra(Fa) — Ra ()] + 41,12} (52)

%,

+ The symbol (") indicates normalization of the vector acted upon.
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8. NUMERICAL RESULTS

All the examples solved are constituted by cantilever beams having a cross-section
corresponding to one of the two shown in Fig. 5. with the exception of the first example
which does not require such a specification. The warping functions .. ¥, and ¥, were
obtained by making use of relations (12) (15) and are reported in the Appendix together
with the series expansions adopted for the displacement functions.

The first example refers to the classical Beck problem which was solved by adopting
the Euler-Bernoulli model. The lateral displacement was interpolated with an increasing
number of terms of the series expansion and the rate of convergence is shown in Table 1.
The flutter loads were obtained by checking the trajectories of the first two circular fre-
quencies while increasing the applied load. The starting trial vectors to be used at each load
level were assumed to coincide with the optimal vectors of the preceding load level.

Subsequently. the same problem was solved by adopting 16 terms of the sertes expan-
sion for each unknown function in order to compare the results of the proposed model with
those given by the Euler-Bernoulli and Timoshenko models (Table 2). When the beam

Table 1. Convergence test (Beck problem)

NUMBER 8 16 32 a8 , oS
OF TERMS 2"
13
[ )
P, eEJ 20.0068 | 20.0419| 20.0496| 20.0505 EULER-BERNQULLI
P“B:'/E J = 20.0509

Table 2. Influence of slenderness on flexural Nutter load (Beck problem)

2h 2.50 5.00 10.00 15.00
‘/
EULER- 4 p
BERNOULLI 20.04 20.04 20.04 20.04 7 -—
V/
1
o —— o
TIMOSHENKO | 2.065 4.661 10.55 14.23
P,
PRESENT I Section A
ANALYSIS 2.207 4.777 10.72 14.37 b=h EJ,
b 2h
k J | +
e ~
2t
i}
h < ¢C=S h
o _}- va o
X P |
RS SV |
- T
2t
Y v S
t/h =1/50 Yy
E/G = 2.6

Fig. 5. Cross-sections considered for the numerical examples.
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Table 3. Influence of slenderness on tlexural flutter load (Leipholz problem).

im 250 | soo | 1000 [1500 | .29
CLASSICAL .
MODEL 4005 | 4005 | 4005 | 4005 | ~—tu
q.r
PRESENT 1 Section -
ANALYSIS 3.914 7.265 19.17 2726 | b=x=h EJ,

Table 4. Influence of slenderness on torsional flutter load (Nemat-Nasser and Herrmann

problem).

& 2.50 5.00 10.00 | 15.00
;;‘ «— P2
CLASSICAL 7 — P2

MODEL 1856 | 1886 | 2070 | 2220
PRESENT P8 J,

ANALYSIS 1044 | 1542 | 19.09 | 21.75 | ISection

beh EAJ,

becomes rather short, it can be seen that preventing the built-in section from warping makes
the beam stiffer with respect to the Timoshenko beam model.

The third cxample refers to a cantilever beam subjected to a uniformly distributed
axial load which follows the deformed centroidal axis (Leipholz problem). The numerical
results reported in Table 3 confirm the determining role that the shear strains play, especially
in the higher modes ol the Nexural vibrations (16 terms were adopted for cach unknown
function).

The fourth example analyzes the influence of the shear strains on the torsional flutter
load for a cantilever beam (having an | cross-section) subjected to two axial forces acting
at the intersections between the web and the flanges of the end cross-section (Nemat-Nasser
and Herrmann problem). The two forees are assumed to follow the local transformed
generatrices. The numerical results reported in Table 4 (16 terms for cach unknown func-
tion) show that the shear strains still play a signiticant role even if not such & dramatic one
as in the case of the flexural flutter.

In the fifth example, a cantilever beam having an [ cross-section is subjected to an end
axiul force with three different eccentricities. The case 3, = 0 corresponds to a force acting
at the centroid of the cross-section and, consequently, the first column of Table 5 refers to
uncoupled modes of vibration. The case y, = 0.5/ corresponds to a force acting at the
intersection of the web with a flange. Hence, the second and third columns refer to coupled
modes of vibrations and the symbols T (torsional) and F (flexural) denote the dominant
component of the vibration mode. The numerical results were obtained by adopting eight
terms for cach unknown function. The cases corresponding to the first three rows of Table
5 were analyzed by Nemat-Nasser and Tsai (1969).

In the subsequent examples the trajectories themselves of the non-dimensional circular
frequencies are shown in order to emphasize a phenomenon already revealed by the previous
example, i.c. how the critical response may be characterized by buckling or flutter depending
whether the load follows the middle plance of the cross-section or the local gencratrix. The
structural element considered was a cantilever beam with U section subjected to an end
axial force ; thercfore, the flexural-torsional coupling was an inherent consequence of the
structural gecometry. The analogous problem (with no shear strain influence) has been
recently studied by Aida (1986). Figure 6 shows how the critical response additionally
depends on the slenderness ratio : in fact. it tends to the buckling mode for both the loading
features as the beam length is reduced. In this example eight terms for each unknown
function were adopted and the shear strain influence was fully considered.
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Table 5. Cnitical values for a cantilever beam with an [ section subjected to an eccentric
axial follower force.

P, ? Y, =0. ¥, =0.25h Y, =0.50h £h=50
EJ, Mode Moda Mode b=h
= T-Div  2.407 T-Div  3.330 F-Flu 9516 -~
gz 03
=B T-Div  19.82 F-Flu 1051 T-Div 3873 58
£2 5E
25 F-Flu 20.01
23
SE .
23 T-Div  2.353 T-Div  3.269 F-Flu 7.285 o
o k7] 5@
2 & F-Flu 1515 F-Flu  8.912 T-Div  39.18 oz
P P c
= a <
T-Div  16.16
[~
S
2y T-Div  2.407 T-Div  2.548 T-Div  3.438 T -
ER @R
g ¢
§, 2 T-Div  19.82 F-Flu 10.02 F-Flu 7.566 E é
5 Q
e F-Flu 2001
S g
€%
§3
§§
S 3 T-Div 2.353 T-Div  2.484 T-Div  3.339 3
R o 22>
23 F-Flu 1512 F-Flu 8.253 F-Flu 6.357 2 g
2E &<
Fe T-Div  16.16

T (torsional) and F (flexural) indicate the vibration mode (possibly the domimnt
component). Div stands for divergence and Flu for flutter.

Finally, the case of a cantilever beam, with an 1 cross-section, subjected to an end
lateral foree was considered. Again (out-of-plane) flexural and torsional modes turn out to
be coupled. For the suke of simplicity, the shear strain influence was not considered in this
example, for which eight terms for each unknown function were retained. This problem
does not seem to have been solved in the literature since only thin rectangular cross-sections
were considered (Como, 1966 Barsoum, 1971 Attard and Somervaille. 1987). [n Fig. 7
the non-dimensional values of the flutter load were plotied against the ratio of the first two
(flexural and torsional) frequencies of the unloaded structure. The relative variation of the
two frequencies was obtained by assuming ditferent ratios of the flange width over the web
height. Figure 7 shows how the flutter load approaches zero as the frequency ratio tends
to unity. This paradoxical result was already underlined by Bolotin (1963) who noticed
that, when the natural frequencies of the unloaded structure approach cach other, even
slight damping may have a stabilizing effect. In these cases, however. a non-lincur analysis
which goes beyond the limits of a lincarized formulation (Sethna and Shapiro. 1977) scems
to be the required development.

9. CONCLUSIONS

A model has been presented for thin-walled beams of open scction which takes into
account the middle surface shear deformations associated with shear forces as well as with
secondary torsion. All the loads have been assumed to act in a symmetry planc of the bcam
according to two distinct features, i.e. the loads may follow either the middle plane of the
cross-section or the local deformed generatrix. The internal stresses have been directly
derived from the kinematic field by making use of the constitutive relations. Following the
usual separation of space and time variables, the variational equation expressing Hamilton’s
law has been discretized by making use of trigonometric series expansions. This choice
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6.957
6.577

3.462

2.086

5.145

8/2h « 10

2.301
1.946

e ———

1.277

0.668

3.793
3.761

1.789
1.499

0618
0.336

Fig. 6. Circular frequencics of {lexural torsional vibrution modes for a cantilever beam subjected
to an axial force. The dashed line indicates that the force remains orthogonal to the cross-section.
The solid line indicates that the force follows the local transformed generatrix.

appcars to be the most strictly related to the features of a vibrating beam. For the numerical
applications a suitable algorithm has been developed, based on a vector iteration technique,
which overcomes the difficulties arising from an eigenvalue problem ruled by a non-
symmetric and strongly ill-conditioned matrix. A variety of examples clarify the significant
influence of the shear deformations on the critical loads involving flexural as well as torsional
modes.

SAS 27-11-p¢
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Fig. 7. Flexural - torsional flutter load versus the ratio between the fiest flexural and torsional ciccular
frequencices of the unloaded structure.
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APPENDIX

With reference to the cross-sections adopted in the numerical examples, Figs Al and A2 show the (normalized)
warping functions ., ¢, and ,, determined for the | section and ¢, and ¢, determined for the U section.
Finally, in the numerical examples the unknown functions were represented as follows

R d -1 =
n(2).002) = ¥ a,| cos| —; n; -1},
nel -

v,  f2n-1 =
?. (2 (2). 0. ()= Y a, sm( 5 7).

A=l et

Yoo fn—1 =
LG () = Y a,sin| ———n i)'

These representations are able to satisfy all the essential boundary conditions of the examples considered.
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Fig. A2 Normahzed warping functions o, and i, for the U section.



